
Vector part of optical activity probed with x-rays in hexagonal ZnO

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 156201

(http://iopscience.iop.org/0953-8984/19/15/156201)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 17:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/15
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 156201 (18pp) doi:10.1088/0953-8984/19/15/156201

Vector part of optical activity probed with x-rays in
hexagonal ZnO
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Abstract
We discuss how measurements of x-ray circular intensity differentials (XCIDs)
could be used to probe the Voigt–Fedorov vector part of optical activity (OA)
due to electric dipole–electric quadrupole (E1E2) interferences. The first
experiment was carried out on a single crystal of zincite (hexagonal ZnO: class
6mm). XCID spectra were recorded in the x-ray resonant diffraction regime
near the Zn K edge using the (300) reflection at Bragg angles near 45◦. In the
x-ray range, the effective operator responsible for the vector part of OA can be
assigned to the vector product L × ΩL − ΩL × L ∝ n, in which L and ΩL are
time-reversal odd operators associated with the orbital angular momentum and
the orbital anapole respectively, whereas n is a true time-reversal even electric
dipole. This is consistent with the pyroelectric properties of zincite crystals.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Unlike Faraday rotation or magnetic circular dichroism (MCD), which refer mostly to electric
dipole (E1E1) polarizabilities, natural optical activity (OA) is associated with transition
probabilities that mix multipole moments of opposite parities, e.g. E1M1 or E1E2 [1–3]. The
Curie’s principle teaches us that this is only possible in systems with odd space parity. Since the
discovery by Arago [4] and Biot [5], early in the 19th century, that crystalline quartz induced
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Table 1. Irreducible parts of OA in O(3) [17].

Pseudo-scalar Polar vector Pseudo-deviator
Odd parity
Crystal classes Point groups Enantiomorphism Voigt/Fedorov XNCD

4̄3m 6̄m2 6̄ Td D3h C3h − − −
432 23 O T + − −
622 32 422 D6 D3 D4 + − +
6mm 3m 4mm C6v C3v C4v − + −
6 3 4 C6 C3 C4 + + +
4̄2m D2d − − +
4̄ S4 − − +
mm2 C2v − + +
222 D2 + − +
2 C2 + + +
m Cs − + +
1 C1 + + +

a rotation of the polarization vector of a linearly polarized light, OA has fascinated successive
generations of physicists [6]. In the x-ray range, OA has long been ignored because the E1M1
interference terms, which dominate natural OA at optical wavelengths, become vanishingly
small in x-ray absorption spectroscopy (XAS) given that, for deep inner-shell spectroscopies,
magnetic dipole (M1) transitions are forbidden, at least in non-relativistic theories.

In the x-ray regime, however, the E1E2 cross terms become much stronger than at
optical wavelengths and are at the origin of the rather large x-ray natural circular dichroism
(XNCD) signatures which were measured at the ESRF in a variety of non-centrosymmetric
crystals [7–12]. Table 1, which was first established by Jerphagnon and Chemla [17], is
useful to clarify which ones among the 21 classes of non-centrosymmetric crystals may exhibit
XNCD [13–16]. Following Landau–Lifshitz [18], OA is introduced as a consequence of spatial
dispersion in the formulation of the electric induction [17]: D = εDE + η∇ ⊗ E, in which
εD is the permittivity tensor. If ∇ ⊗ E stands here for the tensor product of vectors ∇ and E,
then η is a third rank tensor characterizing optical activity (OA). We are concerned in this paper
with the decomposition of η into irreducible representations invariant under the operations of
the rotation group O(3). Crystal classes which admit a pseudo-deviator as rotational invariant
are those which exhibit XNCD. Recall that XNCD was successfully measured in a biaxial
crystal of potassium titanyl phosphate (KTP), which belongs to the non-enantiomorphous class
mm2 [11, 12], for which η has no scalar part. Anyhow, the E1E2 tensors are traceless, i.e. have
no pseudo-scalar part: this is consistent with the orthogonality of the spherical harmonics Y m

1
and Y m

2 which are commonly used to describe the electric dipole and electric quadrupole in
O(3). As a practical consequence, XNCD vanishes in isotropic liquid phases even though it
was found to be measurable in oriented liquid crystals [16].

In this paper, we wish to focus on crystals in which η has an irreducible part that transforms
as a polar vector in O(3). Such crystals may exhibit no enantiomorphism nor any natural
circular dichroism. In 1905, Voigt was the first to try to detect such a highly peculiar OA:
his idea was that, in crystals of suitable symmetry, a linearly polarized incident light could
be reflected as an elliptically polarized light [19]. This problem was reconsidered later by
Fedorov [20], who suggested specific geometries to maximize the amplitude of OA at optical
wavelengths. To the best of our knowledge, the first successful experiment was reported only
in 1978, by Ivchenko and his colleagues [21], who looked for OA in the exciton resonance
region where OA effects are enhanced. In their first experiment they used a uniaxial crystal

2



J. Phys.: Condens. Matter 19 (2007) 156201 J Goulon et al

of cadmium sulfide (CdS) with the wurtzite type of structure, but they pointed out later to the
generality of their approach [22, 23]. In 1990, Graham and Raab described the propagation
of light in anisotropic crystals using an extended multipole theory which included E1E2 and
even higher order terms. They noted the possible existence of a skew polarization inside the
crystal [24, 25]. Already 14 years earlier, Jerphagnon and Chemla [17] had pointed out that
the vector part of OA was associated with a (very) weak longitudinal component of electrical
polarization that was a specific property of all pyroelectric materials.

Our experiment in the x-ray regime was performed with a uniaxial single crystal of
zincite (hexagonal ZnO) featuring the same wurtzite type of structure as in the experiment
of Ivchenko and his colleagues. Recall that zincite was given as the model of a diatomic
pyroelectric crystal [26]. In the x-ray regime, specular reflection occurs only at very grazing
incidence and cannot be used to detect a vector-type OA just as at optical wavelengths: it is
the aim of this paper to show that coherent x-ray scattering in a resonant diffraction regime,
i.e. diffraction anomalous near edge structures (DANES), can give access to the vector part of
OA in the x-ray range. In section 2, we review how to transpose the concept of circular intensity
differential (CID) into the x-ray scattering regime. Section 3 focuses on instrumentation and
measurements whereas the nature of the effective operator responsible for the vector part of
x-ray detected optical activity (XDOA) is discussed in section 4, in which ab initio simulations
of the measured effect are also reported.

2. X-ray circular intensity differentials

2.1. Specular reflection at optical wavelengths

Zincite (space group P63mc, No 186) belongs to the crystal classes 4mm, 3m and 6mm, that
are often (improperly) quoted as optically inactive because such crystals do not induce any
optical rotation or any circular dichroism. Actually, table 1 reminds us that crystals which
belong to these classes should exhibit OA, but only of vector type. Graham and Raab [25, 27]
confirmed that reflectivity measurements would allow us to access the gyrotropy properties
of such crystals when the optic axis is perpendicular to the plane of incidence, i.e. when
c ⊥ [k,ks]. In measurements on scattered light, one is most often interested in the circular
intensity differentials (CIDs) defined as [2]

CID(σ,π) = I L(σ,π)
s − I R(σ,π)

s

I L(σ,π)
s + I R(σ,π)

s

. (1)

Hereafter, the (σ, π ) superscripts will be specified only when a given linear polarization
component of the scattered light (perpendicular or parallel to the scattering plane) is measured
while the incident photons are either left (L) or right (R) circularly polarized. For scattering
at 90◦, CID(σ ) and CID(π) refer to polarized or depolarized circular intensity normalized
differences respectively. Notice that CID(σ ) is equivalent to a measurement of the degree of
circularity of the light scattered at 90◦, since, according to Barron [2], CID(σ ) = −Ps

3 . Starting
from the usual Jones reflection matrix,(

Eπ
s

Eσ
s

)
=

[
rππ rπσ
rσπ rσσ

](
Eπ

i

Eσ
i

)
. (2)

Graham and Raab derived the following expression of the CID ratio for measurements
performed without any polarization analysis:

CID = 2 Im[rππr∗
πσ − rσσ r∗

σπ ]
rππr∗

ππ + rπσ r∗
πσ + rσπr∗

σπ + rσσ r∗
σσ

. (3)
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To follow closely the notations of [25], let us define inside the crystal the wavevectors
k′′ = kc/ω, c being the speed of light in vacuum, ω its frequency and μ0 the vacuum
permeability whereas the refractive index (phase velocity index) is n = |k′′|. Inside such
an anisotropic medium, two waves labelled {e, o} are expected to propagate, which will differ
by their components: k ′′

ez
2 = n2

e − k ′′
x

2 and k ′′
oz

2 = no
2 − k ′′

x
2. Here, ne = ny and no = nx = nz

are the anisotropic refractive index components, whereas k ′′
x = n cos θs satisfies the Snell–

Descartes law.
When c ⊥ [k,ks], there are non-vanishing off-diagonal Fresnel amplitudes that are

responsible for gyrotropy:

rπσ = rσπ = ±A3
i · μ0cn2 sin 2θs

(n sin θs + k ′′
ez)(n

2
o sin θs + nk ′′

o z)
. (4)

The CID ratio given in equation (3) will not vanish if rπσ = rσπ 	= 0 and simultaneously
rππ 	= rσσ . The latter condition is a priori satisfied since

rππ = n2
o sin θs − nk ′′

oz

n2
o sin θs + nk ′′

oz

	= n sin θs − k ′′
ez

n sin θs + k ′′
ez

= rσσ . (5)

Thus, we are left with the condition A3 sin 2θs 	= 0. The formulation of A3 given by Graham
and Raab is the same for crystal classes 4mm, 3m and 6mm and includes terms related to the
real part (Re) of the complex E1E2 tensor [24]. Dropping the E1M1 terms which are small in
the x-ray range, the relevant part of their result expressed in the symmetry axes {1, 2, 3} of the
crystal would reduce to A3 = 1

2ω(a113 − a311), in which, in the Barron–Gray gauge [28],

aα,βγ = aα,γβ = 2h̄−1�v
∑

N

ωJ N Z J N Re[〈J |E1α|N〉〈N |E2βγ |J 〉] (6)

whereas ωJ N = h̄−1(EN − EJ ) and Z J N = (ω2
J N − ω2)−1. Given the latter formulation of

A3, it is tempting to build up an extended gyration tensor ζ ′′
i jk = 1

2ω(ai jk − aki j ) preserving
the time-reversal even parity of the ai jk but which would be antisymmetric in the permutation
of the first and last suffixes so that A3 = ζ ′′

311 = −ζ ′′
113 with ζ ′′

333 = 0 = ζ ′′
iki . Since ζ ′′

i jk now
satisfies the same permutation symmetry properties as ηi jk , it should transform in the same way
in O(3): its vector-type irreducible component should then be 2ζ ′′

311 = 2A3 for crystal classes
4mm, 3m and 6mm [17].

Equation (4) makes it clear that the CID ratio should be maximum for θs = 45◦ but should
vanish at normal incidence θs = 90◦. This is consistent with the lack of CD signal. Of direct
interest to us is the property that A3 → −A3 when the crystal is rotated by π about the z axis,
i.e. about the normal to the crystal.

2.2. X-ray coherent resonant scattering regime

Even though the results established by Graham and Raab refer only to Maxwell equations and
constitutive equations with proper boundary conditions, their extension into the x-ray coherent
resonant scattering regime deserves special care. Key issues in x-ray diffraction are related
to the anisotropy of the anomalous dispersion (AAD) or the anisotropic tensor susceptibility
(ATS). Actually, the understanding of these questions has much progressed over the past
20 years thanks to major contributions by several groups: Templeton and Templeton [29–31],
Kirfel et al [32–34], Finkelstein et al [35] and Dimitrienko et al [36–40]. One typical problem
concerned the observation near an absorption edge of Bragg reflections forbidden by tabulated
glide-plane or screw-axis extinction rules: the current interpretation is that, due to resonant
interaction with x-rays, crystallographically equivalent atoms could become non-equivalent
scatterers owing to some local potential anisotropy.
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Even more puzzling was the discovery by Templeton and Templeton [30, 31] that, in
crystals of potassium chromate (space group Pnma, No 62) and germanium (space group
Fd3m, No 227), third-rank tensor terms contributed to large changes of intensities for weak or
forbidden reflections near the Cr and Ge K edges respectively: it was suggested that resonant
interaction could possibly involve E1E2 excitations at non-centrosymmetric sites. Making
reference here to optical activity may look strange because these crystals are centrosymmetric
and, thus, are not optically active in the usual sense: note that there is actually no contradiction
with the theory of XNCD because the contribution of such E1E2 excitations simply vanishes
in the forward scattering geometry (ks = k) in which the theory of XNCD would hold true [14].
Apparently, Blume [41, 42] was the first to realize that resonant x-ray scattering would allow
one to access to a new type of site-selective XDOA. At any non-centrosymmetric absorbing
site, there is a finite third-rank tensor [E1E2]α,βγ that is inherently symmetric in a permutation
of indices (β, γ ) but that is not necessarily fully symmetric: its decomposition into irreducible
components may yield at most one symmetric rank-3 septor, one rank-2 deviator and three
vectors (two of them having the same length) [43]. It is the aim of this paper to clarify which
are the irreducible components that may contribute to XDOA [39] and more specifically to a
non-vanishing CID ratio.

The observation by Lee et al of a resonantly excited forbidden (600) reflection in
germanium [44] provides us with a good example where any reference to OA would
be irrelevant. A first interpretation supported by band-structure calculations was that
p–d hybridization in the conduction band of germanium would make E1E2 excitations
possible [45]. According to table 1, the non-centrosymmetric cubic point group 4̄3m at the
Ge sites is strictly optically inactive. Nevertheless, the third-rank E1E2 tensor has a fully
symmetric irreducible septor (with only one single independent component): the latter may
well contribute to resonant anomalous scattering [40] but not to XDOA. Another mechanism
was alternatively proposed, whereby a third-rank anisotropy tensor could also arise from small,
correlated vibrational displacements from the nominal sites of high symmetry [39, 46, 47]:
such atomic displacements directly affect the electric dipole polarizability tensor (E1E1) and
can contribute to a quite significant temperature-dependent correction to the scattered intensity.
As detailed in [47], the so-called thermal motion induced (TMI) third-rank anisotropy tensor
should have 3m symmetry and be symmetric in the permutation of (α, β) indices: its irreducible
representations thus include two vectors both directed along c and one symmetric septor. To
observe the (006) glide-plane forbidden reflection, further symmetry considerations suggest
that fully symmetric representations of the anisotropy tensor are needed that cannot contribute
to XDOA.

As pointed out by Voigt, a linearly polarized x-ray beam will be scattered as an elliptically
polarized beam if and only if the E1E2 tensor has a non-vanishing polar vector-type irreducible
component. Typically, this should not be the case with the glide-plane forbidden reflections in
germanium. This statement was supported by a polarization analysis of the (006) reflection in
azimuthal scans [48]: very little space was left for a (very weak) Stokes–Poincaré component
Ps

3 whenever the incident beam was linearly polarized. A fairly different situation could prevail
for K2CrO4 because the point group at the non-centrosymmetric Cr sites (Wyckoff 4c positions)
is now m, which, according to table 1, is compatible with a vector-type OA [17]: recent
measurements at the ESRF have also confirmed that a linearly polarized incident x-ray beam
was scattered as an elliptically polarized radiation [49].

The case of zincite was interesting because the space group of wurtzite let us expect glide-
plane forbidden reflections of the type (hh
) with 
 = odd but h 	= 0. This prompted Collins
et al [51] to study the resonantly excited forbidden reflection (115). Given that the point group
symmetry of the zinc scattering atoms at the Wyckoff (a) sites is 3m, antisymmetric E1E2

5
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terms could possibly contribute here to a vector-type XDOA. On the other hand, ZnO has a
low-lying optical phonon mode of energy 12.4 meV at the �-point [50]. There is now the
difficulty that, in hexagonal ZnO, both E1E2 and TMI mechanisms yield third-rank anisotropy
tensors referring to the same point group symmetry 3m. The assumption made in [51] was that
the two mechanisms had different temperature dependences: this led Collins et al to record
the intensity of the (115) reflection as a function of energy (E) in the Zn near edge region on
increasing the temperature from 59 to 800 K. The intensity of the forbidden reflection was then
fitted according to a semi-empirical law [46, 51]:

I (E) =
∣∣∣∣A(E)eiφ(E) + B(E) coth

(
h̄ω0

2kT

)∣∣∣∣
2

e−2M (7)

in which the temperature independent first term was tentatively assigned to the E1E2
contribution. Unfortunately, no information regarding XDOA could be obtained because only
fully symmetric parts of the E1E2 or TMI anisotropy tensors make the observation of the (115)
glide-plane forbidden reflection possible exactly as in the case of Ge.

Our strategy complements that adopted in [51]. Let us emphasize that the (300) reflection
which we selected is not a forbidden reflection: on the contrary, it is quite strong and about 80%
of its intensity is due to Zn atoms with 3m site symmetry. Moreover, what was measured
was not simply the reflection intensity but the x-ray (diffracted) circular intensity differential
(XCID) analogue to the CID of equation (1). What led us to select the (300) reflection is
actually the argument that the corresponding Bragg angle θs was very close to 43◦ near the Zn
K edge (9665 eV): by analogy with equation (4), one may then expect the contribution of some
antisymmetric part of the tensor E1E2 to be maximized. Finally, it was anticipated that the
measured XCID should reverse its sign on rotating the crystal by ψ = 180◦.

2.3. Anisotropic tensor susceptibility formalisms

If we neglect non-resonant and magnetic terms, the total elastic scattering amplitude is given
by the Kramers–Heisenberg formula:

F = ε∗
s · ε〈J |ei(k−ks)·r|J 〉 + 1

m

∑
N

〈J |ε∗
s · Pe−iks·r|N〉〈N |ε · Peik·r|J 〉

EJ − EN + h̄ω + iγ
(8)

where h̄ω, k and ε are the energy, wavevector and polarization vector of the incident x-
ray beam, ks and εs are the wavevector and polarization vector of the scattered x-ray beam,
P = −ih̄∇ and m is the electron mass. Note that we used the ‘electrodynamics’ convention
for the phase of time evolution (e−iωt ), whereas within the ‘crystallographer’s’ convention all
scattering factors should be replaced by their complex conjugates. In a crystal, each point G
of the Bravais lattice will add its own contribution F(G). The term F(0) is to be expanded as
a sum over all sites n of the unit cell: F(0) = ∑

n eiq·rn fn , where rn is the position of site n,
q = k − ks is the scattering vector and fn is the scattering factor for site n. Recall that fn is the
sum of multipole terms: fn = fnT + fndd + fndq + fnqq + · · ·. Here fnT denotes the Thomson
scattering contribution: fnT = (ε∗

s ·ε) f0 where f0 = 〈I |eiq·r|I 〉 is real; fndd is the dipole–dipole
contribution, fndq is the dipole–quadrupole contribution and fnqq the quadrupole–quadrupole
contribution. To simplify notation, we shall drop hereafter the site index n.

To take into account polarization, we introduce now the scattering factors f σσ , f σπ , f πσ

and f ππ , in which the two superscripts refer to the linear polarization states of the incident
and scattered beams respectively. Left/right-circular polarization states of the incident beam
will be described using the complex polarization vectors: ε = (επ ± iεσ )/

√
2, so that

f L/Rσ = (1/
√

2)( f πσ ± i f σσ ) and f L/Rπ = (1/
√

2)( f ππ ± i f σπ). The total scattered

6
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intensity corresponding to a right/left incident light is then

I L/R = I L/R,σ + I L/R,π = | f πσ ± i f σσ |2 + | f ππ ± i f σπ |2
2

(9)

whereas

�I = I L − I R = −2 Im[ f σσ ( f πσ )∗ + f σπ( f ππ)∗]. (10)

One may easily check that

f σσ = f0 + f σσdd + f σσdq + f σσqq

f πσ = f πσdd + f πσdq + f πσqq

f σπ = f σπdd + f σπdq + f σπqq

f ππ = cos 2θs f0 + f ππdd + f ππdq + f ππqq

where θs is the Bragg angle. Let us keep in mind that the dominant terms are the Thomson and
dipole–dipole contributions. Neglecting the quadrupole–quadrupole contributions we get

�I � −2 f0 Im( f πσdd + f πσdq )+ 2 cos 2θs f0 Im( f σπdd + f σπdq )

+ 2 Im[ f σσdd ( f πσdd )
∗ + f σσdd ( f πσdq )

∗ + f σσdq ( f πσdd )
∗

+ f σπdd ( f ππdd )
∗ + f σπdq ( f ππdd )

∗ + f σπdd ( f ππdq )
∗].

Let us write explicitly the dipole–dipole and dipole–quadrupole contributions:

fdd =
∑

N

mω2
J N

EJ − EN + h̄ω + iγ

∑
αβ

ε∗
sαεβdαβ

fdq = (i/2)
∑

N

mω2
J N

EJ − EN + h̄ω + iγ

∑
αβγ

ε∗
sαεβ(tαβγ kγ − t∗

βαγ ksγ )

in which dαβ = 〈J |rα|N〉〈N |rβ |J 〉 and tαβγ = 〈J |rα|N〉〈N |rβ rγ |J 〉, whereas ωJ N =
(EJ − EN )/h̄. In a non-magnetic crystal such as zincite, the wavefunctions |J 〉 and |N〉
are time-reversal even, so that dαβ and tαβγ are real. Indeed, we have the usual permutation
symmetries: dβα = dαβ and tαγβ = tαβγ ∝ Re[E1E2]αβγ .

Moreover, for the space group P63mc, translations rn within the unit cell are along the c
axis whereas, in our experiment, the scattering vector is along a∗ because the reflecting plane
is (300). As a consequence: q · rn = 0 and the phase factor eiq·rn = 1. This implies that the
symmetry group that is relevant in the calculation of the scattering factors is no longer the local
point group 3m (C3v) of the Zn sites, but the full point group of the crystal 6mm (C6v). This
consideration led us to the following result:∑
αβγ

ε∗
sαεβ(tαβγ kγ − tβαγ ksγ ) = [(ε∗

s · k)ε3 − (ε · ks)ε
∗
s3]t113

+ q3[(ε∗
s · ε)t113 + ε∗

s3ε3(t333 − t113 − t311)] (11)

where the 1 and 3 axes are along the a and c axes of the crystal, respectively, and the 2 axis is
perpendicular to 1 and 3. The first term is antisymmetric in ε and ε∗

s and proportional to k+ks,
as can be seen using the identity [54]

(ε∗
s · k)ε − (ε · ks)ε

∗
s = (ε∗

s × ε)× (k + ks). (12)

The second term of equation (11) is symmetric in ε and ε∗
s and proportional to q = k − ks.

This second term, however, vanishes in our experiment because q3 = 0, since c was set
perpendicular to the scattering vector q. Thus, given the geometry of our experiment, the
XCID ratio will depend only on one single dipole–quadrupole term, t113: this is at variance
with the result of Graham and Raab discussed in section 2.1.

7
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The next step is to calculate the angular dependence of the various scattering factors
during an azimuthal (ψ) rotation, especially when c is perpendicular to the scattering plane
(ψ = ±π/2). Regarding first fdd and defining gεεs = ∑

αβ ε
∗
sαεβdαβ , one obtains

gσσ = cos2 ψd11 + sin2ψd33,

gσπ = −gπσ = sinψ cosψ sin θs(d33 − d11),

gππ = (cos2 θs − sin2ψ sin2 θs)d11 − cos2ψ sin2 θsd33.

Note that f σπdd = f πσdd = 0 when θb = π/4. The angular dependence of the dipole–quadrupole
term is much simpler since f σσdq = f ππdq = 0 and

f σπdq = f πσdq = sinψ sin 2θs(i/2)
∑

N

mω2
J N

EJ − EN + h̄ω + iγ
t113. (13)

In our experiment, θs is close to π/4 and the only term proportional to sinψ is indeed the
dipole–quadrupole contribution −2 f0 Im( f πσdq ). Any other term has an angular dependence in
nψ with n > 1.

Following the original work of Trammel et al [52], Carra and co-workers [53, 54] tried to
exploit irreducible spherical tensors instead of irreducible Cartesian tensors. This approach
proved to be most successful to identify the effective operators involved in the resonance
process. In particular, Marri and Carra [54] reported recently a detailed analysis of the
anisotropy tensors associated with E1E2 excitation for both time-reversal even and time-
reversal odd processes (R = ±1). The E1E2 contributions to the resonant scattering process
could be linearly decomposed as

fE1E2 = (4π/k)
∑
κ,q,R

T (κ,R)∗
q (ε∗

s ,ks; ε,k)
∑


=
c±1,
′=
±1

A(ωk)

×
∑
j,x

[〈g|cRκ O(κ,R)
q (
, 
′) j + (−1)ηdR

κ S(κ,R,x)q (
, 
′) j |g〉] (14)

in which O(κ)
q and S(κ)q are respectively spinless and spin-dependent operators of rank-κ

expressed in terms of the electronic ground state |g〉. As in the case of absorption spectra [16],
the complex tensors T (κ,R)

q are required to describe what coupling is possible with a given
polarization state of the incident and of the scattered x-ray photons; A is a dimensionless
scattering amplitude describing the resonant process. In our problem, equation (14) is expected
to simplify considerably: since our experiments was carried out at a K-edge, only spinless
operators (O) should be considered; we are concerned here only with a time-reversal even
process (R = +1); finally, the effective operator should implicitly transform as a vector (κ = 1)
and, according to [54] (see table 2), the only effective operator satisfying this requirement is
n = r/r . Marri and Carra also identified two additional time-reversal even, spinless effective
operators: the first one is the orbital pseudo-deviator involved in XNCD experiments; the
second one is an octupolar operator most probably linked to the symmetric septor part of E1E2
and which seems to play the key role in the case of the germanium (006) forbidden reflection.
This may not be true regarding the forbidden reflections (hk0, h odd) in potassium chromate
because the point group symmetry of the Cr atoms in site 4(c) [30, 49] is m y and not 4̄3m as
erroneously stated in [54]: irreducible representations of both vector and pseudo-deviator types
may have then to be considered. Anyhow, as noticed by Marri and Carra, neither the dipolar
nor the octupolar operator can be measured by an x-ray absorption experiment.

In a further attempt to get a deeper insight into the nature of the term t113 measured in
a XCID experiment, let us examine first which are the irreducible components of the third
rank tensor Re[E1E2]α,βγ . For such a symmetric third rank tensor and point group symmetry
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6mm, the decomposition into irreducible components carried out by Jerphagnon et al [43]
confirms that there is no deviator and that the only components that survive are two vectors:
V1 ∝ [4t113 + t333]; V3 ∝ [ta311 + t333] plus a symmetric septor with non-zero terms: S333 =
2(t333 − 3t311)/5; S311 = S322 = (3t311 − t333)/5. It thus appears that t113 is unambiguously
associated with a polar, vector-type irreducible representation of Re[E1E2]α,βγ . If we look
next at the spherical tensor analysis of the elastic scattering amplitude carried out by Marri
and Carra [54], we find that, for 6mm symmetry, only the tensor components P (1,+)

0 (dipole)
and F (3,+)

0 (octupole) do not vanish and their values are proportional to 3t113 − t311 + t333 and
−2t113 − t311 + t333, respectively. Thus t113 is found to contribute to both P (1)

0 and F (3)
0 .

Following Buckingham and Raab [55], further simplification arises in systems with C3v

or C6v symmetry since, according to Birss [56], t333 = −2t311: as a consequence, V3 = 0,
V1 ∝ [2t113 − t311], whereas S333 = −2S311 = −2S322 = −2t311. Similarly, one obtains
P (1,+)

0 ∝ 3[t113 − t311], whereas F (3,+)
0 ∝ −[3t311 + 2t113]. It now clearly appears that this is

the dipole operator of the Marri–Carra P (1,+)
0 , which should be proportional to the vector part

of the OA tensor but not the XCID ratio itself. To determine unambiguously P (1,+)
0 and F (3,+)

0 ,
one should complement the measurement of the XCID ratio with another experiment aimed at
characterizing the fully symmetric septor part of Re[E1E2] that depends here on one single
term: t311.

3. Experimental XCID measurements

3.1. ESRF beamline ID12 and related instrumentation

The experiment was carried out at the ESRF beamline ID12. Since this beamline has been
extensively described elsewhere [57, 58], only a few points will be considered that were
determinant for this project. In changing the phase between the horizontal/vertical magnetic
field arrays of our HELIOS-type helical undulator, we had the capability to flip the circular
polarization of the emitted x-ray photons from left to right. Even though the Stokes–Poincaré
circular polarization rate P3 of the x-ray source exceeded 0.97, reverting the helicity of the
undulator radiation unfortunately does not imply that, at the sample location, the helicity of the
monochromatic photons will be perfectly inverted as well. This will happen only if

(i) the two-crystal monochromator is operated at a Bragg angle far from 45◦, where the
monochromator becomes itself a linear polarimeter, and

(ii) the Stokes–Poincaré component P2 of the monochromatic x-ray beam is kept very small.

The KoHzu monochromator of beamline ID12 was equipped with a pair of Si(111) crystals
cooled down to 140 K. Owing to the fact that the DANES spectra were recorded at the Zn
photoionization K edge (9.659 keV), no low-pass mirror was required to cut harmonics and no
focusing optics was needed. With a Bragg angle (θB) of the order of 11.8◦, the intrinsic energy
resolution of the monochromator was not particularly impressive (�E = 1.72 eV), but on
closing the slits located in front of the diffractometer we reduced further the vertical divergence
to 4.3 μrad and improved the energy resolution to 1.38 eV. For such a small Bragg angle, we
could check that the circular polarization rate of the monochromatic beam was very high, with
P2 � 0.02.

For this experiment, we did not use a sophisticated multicircle diffractometer: we simply
adapted a UHV reflectometer initially designed for other purposes [59, 60]. In the configuration
illustrated with figure 1, a UHV compatible six-way port stainless-steel chamber could be
rotated about a horizontal axis (Y ) perpendicular to the diffraction plane [X, Z ] defined with
respect to the laboratory frame {X,Y, Z}. Note that {x, y, z} is the reference frame of the
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Figure 1. Geometry of the XCID experiment and schematic view of the diffractometer. Notice that
the crystal c axis is perpendicular to the scattering plane for ψ = ±π/2.

Figure 2. In vacuum diffractometer: (a) detector/slit assembly seen from viewing port A; (b) overall
view of the diffractometer with its rotating chamber and playless wormscrew.

sample, not to be confused with the symmetry axes of the crystal. A fine tuning of rotation
�RY was required to scan the rocking-curve profile of the selected reflection: this was possible
thanks to a very high-precision playless helical wormscrew (Zahnradfabrik OTT, Germany),
which allowed us to rotate the whole chamber whereas two differentially pumped rotary
drives preserved the full UHV compatibility of the rotating vessel (see figure 2(b)). Since
the orientation of the crystal was basically defined by the geometry of the sample holder, the
amplitude of�RY did not exceed in practice a few degrees and the input bellow could perfectly
accommodate mechanically such a small adjustment of the Bragg angle (θs), that was performed
with an angular resolution of about ±1.5 μrad.

In this experiment, we were concerned with Bragg angles of the order of θs � 45◦. The
detector had then to be located along the 2θs direction, i.e. at about 90◦ from the incident
beam or close to the vertical (X ) axis. For convenience, the 2θ scan was replaced by a trivial
translation (TZ ) of a narrow slit (δSZ � 0.5 mm) (see figure 2(a)) located in front of the
detector at about 14 cm of the sample. The detector was a low-noise photodiode manufactured
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by Eurisys-Canberra (France) and fully compatible with the standard readout electronics in
use on beamline ID12. Its size (LY = 70 mm; L Z = 12 mm) did help us to make the
whole experiment much less sensitive to lateral (angular) instabilities of the incident x-ray
beam but, unfortunately, it also increased the fluorescence background, even though the narrow
slit did considerably restrict the solid angle over which fluorescence photons were collected.
An azimuthal rotation (�ψ) about the sample axis (z) was implemented using a compact, in-
vacuum stepper motor (Caburn MDC) attached to the sample holder. In order to carefully
align the diffractometer with respect to the incident beam, two more degrees of freedom were
required: a transverse translation TY and a rotation RX around the vertical axis.

3.2. Data acquisition and data reduction

A high-quality single crystal of zincite was purchased from Escete (Enschede, Netherlands).
This crystal platelet (5 mm × 10 mm × 2 mm) was cut with its optic c axis parallel to the
10 mm long edge. The Bragg reflections were found to agree rather well with the literature
parameters [26]: a = b = 3.2499 Å; c = 5.2066 Å; volumic mass ρ = 11.3138 g cm−3.
For the (300) reflection (2d = 1.8763 Å), the Bragg angle decreased from 43.19◦ to 42.75◦
over the selected Zn K-edge XANES range (9654.6–9734.7 eV). At the beginning of each
experiment, the alignment of the diffractometer was systematically checked and the location
of the detector assembly (photodiode + slit) was carefully optimized in order to avoid any
further translation (TZ ) during a whole energy scan of the monochromator. For each energy
setting (θB) of the monochromator, a rocking curve of the zincite (300) reflection was recorded
first with left circular polarization, and immediately afterwards with right circular polarization.
To achieve an accurate definition of the reflection tails, each θs scan included 101 data points
with an average incremental rotation �θs = −0.002◦ (i.e. 34.9 μrad). Under the present
experimental conditions, the angular width of the reflection was of the order of about 50 arcsec
(FWHM). Unfortunately, the accuracy of the azimuthal rotation (�ψ) was not as good and,
in the absence of any angular encoder, the reproducibility of a given angular setting hardly
exceeded 0.2◦.

Data reduction was performed with a modified Fortran package (danes) adapted from an
existing one (xanes), which was previously developed to analyse XNCD as well as a variety
of non-reciprocal x-ray dichroisms [16, 61]. The maximum peak intensity or the measured
area under each reflection were only used as starting parameters to refine the analysis of the
rocking curve using a Voigt profile in which the expected Lorentzian lineshape was convoluted
with a Gaussian broadening function. Simultaneously, the background was decomposed on a
(truncated) orthogonal basis of low-order Tchebychev polynomials. Global fits were generated
on adapting to the present task the powerful minimization package MINUIT from CERN [62]
which includes error analyses and covariance matrix calculations for a safe fitting practice. The
results of the fits generated for each energy and each circular polarization were then combined
together to produce finally a variety of spectra:

• the polarization averaged DANES spectrum 1
2 [I L

s (E)+ I R
s (E)];

• the polarization averaged, deconvoluted Lorentzian angular width W L(E);
• the asymmetry factor g(XCID) = 2 ∗ [I L

s (E)− I R
s (E)]/[I L

s (E)+ I R
s (E)] = 2 ∗ XCID.

Recall that all diffracted intensities (Is) were systematically normalized with respect to a
signal proportional to the incident intensity (I0). Regarding XCID spectra, let us make it clear
that we did not resolve the two linear polarization components of the diffracted beam. However,
since 2θs � 90◦, the only additional contribution to be taken into account is from depolarized
x-ray photons [2], but the latter contribution is expected to be small.
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s

s

Figure 3. DANES (a) and WL (b) spectra of the (300) reflection of zincite recorded with c ⊥ [k, ks]
and ψ = −π/2. The DANES signal was not corrected for absorption. Polarization averaged
XANES and XLD spectra are reproduced as references in plot (c); note the enhanced resolution
achieved in the RIXS detection mode.

We have reproduced in figure 3(a) the DANES spectrum of the (300) reflection measured
in a geometry in which the optic axis of the ZnO crystal was set perpendicular to the plane of
incidence, i.e. with c ⊥ [k,ks] and ψ = −π/2. The raw data displayed in figure 3(a) were not
corrected for absorption because such a correction will cancel out in the calculation of the XCID
ratio. We have also displayed in figure 3(b) the reflection width spectrum W L(E). Obviously
the two spectra shown in figures 3(a) and (b) are different and it seems that the spectrum
W L(E) reproduces the XANES signatures with a better contrast. Recall that W L(E) ∝ f ′′(E)
and near edge oscillations have already been measured in this way in the soft x-ray range [63].
What may not be so well recognized, especially among hard x-ray spectroscopists, is the
property that the very weak W L(E) signatures benefit from an enhancement due to the virtual
absence of core–hole broadening within the adiabatic approximation of the scattering process.
This point will be considered in more detail elsewhere.

For the sake of reference, we found it useful to reproduce in figure 3(c) polarization
averaged XANES spectra and natural x-ray linear dichroism (XLD) spectra recorded
independently with the same zincite crystal and c ⊥ [k,ks]. The XLD spectra were measured
on inserting downward with respect to the monochromator a quarter-waveplate (QWP) to
convert the monochromatic, circularly polarized x-ray photons into linearly polarized x-
ray photons with either σ or π polarization. Note that all XANES or XLD spectra were
recorded in the fluorescence excitation mode either on monitoring the integrated emission of the
backscattered fluorescence intensity or on using a high-resolution crystal analyser as described
in more detail in [64]. As expected, the spectra recorded with the crystal analyser were found
to benefit from an enhanced energy resolution of the XANES signatures because the core–hole
broadening was again significantly reduced.
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Figure 4. (a) Asymmetry factor of the (300) reflection of zincite measured with c ⊥ [k, ks]
and ψ = ±π/2; (b) non-inverted part of the asymmetry factor spectra compared to a rescaled
XLD spectrum; (c) fit of the azimuthal scan performed at a fixed energy (9675 eV) where XDOA
measured at ψ = π/2 was maximum; an unwanted glitch is marked with an arrow.

3.3. Measured XCID spectra

The spectral dependence of the asymmetry factor g(XCID) of the (300) reflection of zincite
has been measured first with c ⊥ [k,ks] and is displayed in figure 4(a) for ψ = ±π/2.
These spectra confirm that there is a component that is nicely inverted when the azimuthal
angle is rotated by 180◦: this component is to be assigned to the vector part of XDOA.
Nevertheless, there is also a small residual signal that is not inverted and is shown in figure 4(b)
to reproduce—with some scaling factor—the natural x-ray linear dichroism (XLD) spectrum
arising from pure electric dipole (E1E1) polarizabilities. Ideally, the crystal should have been
rotated about the scattering vector q = k − ks but the mechanical design of our diffractometer
allowed us to rotate it only about the z axis, which is not strictly normal to the diffracting planes.
This approximation could explain part of the non-inverted (residual) signal. On the other hand,
in the absence of any absolute calibration of the azimuthal angle ψ , we cannot pretend that the
crystal was strictly oriented at ψ = ±90◦ with an accuracy better than 0.1◦.

We found also interesting to study at a fixed energy the angular dependence of the
apparent asymmetry factor during an azimuthal scan. The result is shown in figure 4(c),
which reproduces the angular dependence of g(XCID) when the energy of the incident x-
ray photons was tuned to the energy of the maximum XCID signal measured at ψ = 90◦.
Obviously, we do not observe the angular dependence (∝ sinψ) that one would expect for a
pure XDOA contribution: the measured angular dependence is merely ∝ sin 2ψ as observed in
any common x-ray linear dichroism (XLD) experiment. Actually, only a Fourier decomposition
of the whole signal by appropriate numerical methods (FT or least-square fit) makes it possible
to disentangle the respective contributions of XDOA and natural XLD. This is illustrated
with figure 4(c), in which we reproduced the individual contributions of XDOA and XLD
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Figure 5. Comparison of the measured XLD spectrum of zincite (a) with an XLD spectrum
simulated with the FDMNES code (b); both spectra were normalized with respect to the edge jump.
Similarly, the measured XCID spectra (c) are compared with XCID spectra tentatively calculated
with FDMNES (d); the XCID data displayed in (c) are the same as in figure 4(a) but we kept only
the part of the signal that was fully inverted. All simulations were performed with the multiple-
scattering option of the FDMNES code.

resolved by a fitting method, taking also into account a very weak drift arising from a small
beam instability. The most serious difficulty in this analysis resulted from the presence of
an unwanted Bragg glitch—marked with the arrow in figure 4(c)—that was found to spoil
dramatically the end of the scan. This explains why the fitted amplitude of the XDOA signal
(0.022) is smaller than the amplitude (0.027) we expected from the fully inverted part of the
signal shown in figure 4(a). Anyhow, the fitted amplitude of natural XLD (0.138) is obviously
large enough to mask completely the XDOA signal except for ψ = ±π/2. Indeed, only a
very small angular shift �ψ � 0.2◦ is enough to generate a significant residual XLD signal as
discussed for figure 4(b).

3.4. Simulated XCID spectra

Since the XCID signal is only proportional to t113, the extraction of the absolute value of this
term is not a straightforward task. Actually, our strategy was to try to reproduce the XCID
spectra using ab initio simulations carried out with the FDMNES code [69]. All calculations
discussed below were performed in the standard multiple-scattering approach with muffin-tin-
like potentials. The finite difference option of the FDMNES code would make it possible to
get rid of the muffin-tin approximation but, unfortunately, at the expense of long computation
times, which did not appear justified, at least in the early stage of the project. One has
to realize, however, that reproducing dichroism spectra is considerably more difficult than
simulating XANES spectra because we are concerned with differential effects, requiring a
very accurate modellization of the relative amplitudes of the near-edge resonances. Another
difficulty arose from the calculation of the simulated spectra as a function of a relative energy
scale (E–E0) in which E0 refers to some arbitrary muffin-tin zero energy. This is why we
found it highly desirable to compare first in figures 5(a) and (b) the experimental x-ray linear
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dichroism spectrum displayed in figure 3(c) with the corresponding XLD spectrum calculated
with FDMNES. Notice that both dichroism spectra were calculated from XANES spectra which
were pre-normalized with respect to the edge jump. In the present simulation, the cluster
centred around the absorbing atom included 122 atoms with a typical radius of R � 6.9 Å.
In figure 5(a), which reproduces the experimental XLD spectrum, E0 was carefully adjusted
so as to let the relative energies of the strongest dichroism peak be identical in figures 5(a)
and (b). Whereas nearly all characteristic features of the experimental spectrum of figure 5(a)
can be identified as well in the simulated XLD spectrum, their relative amplitudes could not
yet be reproduced accurately, partly due to excessive core–hole damping in the semiautomatic
procedure used to convolute the calculated spectra.

In figures 5(c) and (d), we compare next the XCID spectra measured experimentally with
XCID spectra simulated with FDMNES. The experimental data displayed in figure 5(c) are
those of figure 4(a) but we deliberately kept only the part which is truly inverted for ψ = ±π/2
because the latter part is the only one which can be assigned to the XDOA signal. For more
clarity, E0 was slightly shifted by 3.4 eV in order to match with the first zero of the XCID
spectra. In figures 5(c) and (d), one may establish reasonable correlations between features
that exist in both the experimental and in the simulated spectra but, obviously, the relative
intensities are again poorly reproduced, especially in the central part of the spectrum (0–
18 eV). Indeed, excessive core–hole damping will distort once again the XCID lineshapes
over the whole spectral range, but this cannot explain such a strong alteration of the relative
intensities of the XCID signatures in a narrow energy range. One is led therefore to envisage
that something could be missing in our present calculation. We suspect that much of the
discrepancy found between theory and experiment could stem from the neglect of multielectron
excitations involving Zn 3d electrons given that their binding energy in hexagonal ZnO is only
10 eV [70]. This interpretation looks particularly relevant since the E1E2 matrix elements
precisely involve final states mixing orbitals of p and d symmetry. Also the energy range
where major spectral distortions are observed would be consistent with this interpretation, even
though we admit that neither the FDMNES code nor the experiment allow us to determine
unambiguously the Fermi level (EF), that may be lying about 5 eV below E0. Unfortunately,
there is no theory available as yet to calculate E1E2 transition probabilities involving multiple
electron excitations.

Nevertheless, this first result looks to us rather encouraging even though we completely
realize that much time and effort will still be needed before one can reliably reproduce all
features of the E1E2 spectra measured experimentally.

4. Open perspectives

For the first time, we produce clear experimental evidence that XCID spectra recorded near an
absorption edge contain valuable information on the vector part of optical activity. We would
like to focus first on the specific nature of the effective operator responsible for the XCID sig-
natures and show that all types of measured XDOA, including XNCD, could be presented in a
unified frame. We have already suggested elsewhere [16] that the effective operators of XDOA
could be built from the tensor product (⊗) of two spinless, time-reversal odd vector compo-
nents, i.e. the orbital angular momentum L and the orbital anapole (toroidal) moment that is
defined as ΩL = 1

2 (n×L−L×n) in which L and the (electric) dipole n = r/r are assumed to
be orthogonal (L · n = 0). The irreducible representations of L ⊗ n can be easily identified as

• a scalar part, [L ·ΩL ](0);
• a vector part, [ 1

2 (L × ΩL − ΩL × L)](1) = L2 · n;
• a pseudo-deviator part, [ΩL ,L](2).
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The scalar part is relevant only for E1M1 excitations: the latter may induce a very weak XNCD
signal that was measured very recently using enantiomorphous single crystals which were ori-
ented in such a way that all E1E2 terms had to vanish [65]. Regarding XNCD experiments,
though Natoli et al [13] were the first to derive an integral sum-rule to extract the pseudo-
deviator operator responsible for XDOA, it is fair to recognize that the true physical content of
this operator became clear only from the derivation given by Carra et al [66]. Regarding the
vector part of OA, the effective operator is a polar vector (L2 · n), which, as pointed out by
Marri and Carra [54], may be responsible for ferroelectric order. Our result is entirely consis-
tent with the old prediction made by Voigt [67] that crystal classes 4mm, 3m and 6mm were
suitable to observe pyroelectric properties. Note that, in this approach of OA, there is no place
left for the octupolar operator of Marri–Carra, which is implicitly associated with the symmetric
septor representation of Re[E1E2]α,βγ : obviously, such a symmetric part is not related to OA.

Let us recall next that pyroelectric materials are systems in which a ferroelectric order
can exist even in the absence of external electric field, and this order is expected to vary
strongly with temperature. The thermal dependence of the pyroelectric coefficient of zincite is
well known and was tentatively correlated in [26] with atomic displacements and anharmonic
thermal vibrations. As far as the theory of Carra–Marri is correct, then one should expect
the vector part of XDOA derived from the antisymmetric part of the E1E2 tensor to also
be strongly temperature dependent: in this respect, it would be attractive to try to correlate
directly the temperature dependences of XDOA and of the pyroelectric coefficient. As
stressed by Albertsson et al [26], one should take into account in this problem not only
the atomic displacements but eventually also a coupled redistribution of electronic charges
with temperature. This points up the difficulty of using equation (7) in order to disentangle
the contributions of the E1E2 and T M I third-rank tensors involved in resonant anomalous
scattering. This remark does not necessarily contradict the conclusions of Collins et al
regarding the temperature dependence of the forbidden (115) reflection of zincite [51] because
the nature of their experiment was fundamentally different:

(i) from the corresponding diffraction geometry (θs � 54.4◦; ψ = 49.0◦) it appears as
highly probable that the scattering intensity was largely dominated by the anisotropy of
the electric dipole (E1E1) polarizability and therefore by the TMI contribution;

(ii) for that particular forbidden reflection, only the symmetric septor part of the E1E2 tensor
is involved, which does not contribute to the vector part of optical activity;

(iii) numerical simulations carried out with FDMNES would suggest that the temperature
dependence of the septor part should be rather weak [68].

In conclusion, we have shown that XCID measurements exploiting the allowed (300)
reflection of zincite were a unique method to probe selectively the overlap of final states with
either d or p symmetry in the conduction band of this crystal and ultimately in its valence band.
Let us suggest that this method could be extended to a number of semiconductors featuring the
same wurtzite-like structure, including numerous II–VI or III–V systems doped with transition
metal ions and which are of considerable technological importance. In those systems in which
the 3d (or 4d) band may be incompletely filled, it would be very attractive to try to correlate the
strength of the local pyroelectric order and XDOA with the nature and amount of doping. In
this perspective, let us emphasize that CID measurements in resonant inelastic x-ray scattering
(RIXS) could be an interesting alternative experimental option to be considered. The expected
advantages of XCID measurements in the RIXS regime would be that the Bragg angle (θs)
could always be set to exactly 45◦, whereas the two polarization components of the inelastically
scattered photons could be easily resolved, e.g. with the RIXS spectrometer installed on the
ESRF beamline ID12. Typically, the RIXS option would become particularly attractive for
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crystals which do not exhibit such an intense reflection with a Bragg angle close to 45◦, as was
the case with the (300) reflection of zincite.
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Goulon-Ginet C, Dressler P, Rohr P, Lampert M O and Henck R 2005 J. Synchrotron Radiat. 12 57
[65] Rogalev A, Bossak A, Goulon J and Wilhelm F 2007 in preparation
[66] Carra P, Jerez A and Marri I 2003 Phys. Rev. B 67 045111
[67] Voigt W 1910 Lehrbuch Der Kristallphysik (Leipzig: Teubner)
[68] Dmitrienko V E, Ovchinnikova E N, Ishida K, Kokubun J, Kirfel A, Collins S P, Laundy D, Oreshko A P and

Cabaret D 2004 Phys. Status Solidi c 1 3081
[69] Joly Y 2001 Phys. Rev. B 63 125120
[70] Jaffe J E, Pandey R and Kunz A B 1991 Phys. Rev. B 43 14030

18

http://dx.doi.org/10.1070/PU1989v032n08ABEH002748
http://dx.doi.org/10.1107/S0108767397002377
http://dx.doi.org/10.1107/S0108767300003421
http://dx.doi.org/10.1107/S010876730100890X
http://dx.doi.org/10.1238/Physica.Topical.115a00252
http://dx.doi.org/10.1063/1.335023
http://dx.doi.org/10.1080/00018737800101454
http://dx.doi.org/10.1103/PhysRevB.64.201316
http://dx.doi.org/10.1103/PhysRevLett.88.015504
http://dx.doi.org/10.1103/PhysRevB.64.073203
http://dx.doi.org/10.1103/PhysRevB.66.165202
http://dx.doi.org/10.1016/j.physb.2003.11.017
http://arxiv.org/abs/cond-mat/0611239v1
http://dx.doi.org/10.1016/0038-1098(74)90543-2
http://dx.doi.org/10.1103/PhysRevB.68.064110
http://dx.doi.org/10.1103/PhysRevLett.71.287
http://dx.doi.org/10.1103/RevModPhys.66.1509
http://dx.doi.org/10.1103/PhysRevB.69.113101
http://dx.doi.org/10.1088/0034-4885/26/1/309
http://dx.doi.org/10.1107/S090904959701409X
http://dx.doi.org/10.1107/S0909049597016099
http://dx.doi.org/10.1063/1.1757999
http://dx.doi.org/10.1107/S0021889898003227
http://dx.doi.org/10.1107/S090904950402878X
http://dx.doi.org/10.1103/PhysRevB.67.045111
http://dx.doi.org/10.1002/pssc.200405396
http://dx.doi.org/10.1103/PhysRevB.63.125120
http://dx.doi.org/10.1103/PhysRevB.43.14030

	1. Introduction
	2. X-ray circular intensity differentials
	2.1. Specular reflection at optical wavelengths
	2.2. X-ray coherent resonant scattering regime
	2.3. Anisotropic tensor susceptibility formalisms

	3. Experimental XCID measurements
	3.1. ESRF beamline ID12 and related instrumentation
	3.2. Data acquisition and data reduction
	3.3. Measured XCID spectra
	3.4. Simulated XCID spectra

	4. Open perspectives
	Acknowledgments
	References

